
UF2218: Desarrollo de un CMS

Elaborado por: José Manuel Molinero Parra

Edición: 5.1

EDITORIAL ELEARNING S.L.

ISBN: 978-84-16360-70-3

No está permitida la reproducción total o parcial de esta obra bajo cualquiera de sus formas gráficas
o audiovisuales sin la autorización previa y por escrito de los titulares del depósito legal.

Impreso en España - Printed in Spain

Presentación

Identificación de la unidad formativa:

Bienvenido a la Unidad Formativa UF2218: Desarrollo de un CMS. Esta Unidad
Formativa pertenece al Módulo Formativo MF0967_3: Creación y gestión de
repositorios de contenidos que forma parte del Certificado de Profesionalidad
IFCD0211: Sistemas de gestión de información, de la familia de Informática y
Comunicaciones.

Presentación de los contenidos:

La finalidad de esta unidad formativa es enseñar al alumno a integrar en el
sistema de información de la organización contenidos para homogeneizar y
sistematizar su explotación y manipulación mediante herramientas específicas.

Para ello, se analizarán los proyectos de implementación, el entorno tecnoló-
gico y los modelos de procesamiento XML. También se estudiará el modelo
de objeto de documento (DOM), y se profundizará en el modelo basado en
eventos (SAX).

4	

UF2218: Desarrollo de un CMS

Objetivos del módulo formativo:

Al finalizar este módulo formativo aprenderás a:

–– Distinguir las estructuras y técnicas de programación lógicas para el
desarrollo de componentes software, teniendo en cuenta las tecnologías
de desarrollo.

–– Elaborar elementos software que integren o exploren contenidos de otros
repositorios, utilizando interfaz de aplicaciones estándares del mercado
para acceder a los repositorios de datos.

–– Administrar plataformas de servicios CMS.

–– Adecuar y customizar.

–– Desarrollar nuevos componentes.

Índice

UD1.	 Proyectos de implementación

1.1. Metodología de desarrollo...11

1.2. Análisis de Requerimientos..31

1.3. Descripción funcional..45

1.4. Diseño de arquitectura..57

1.5. Diseño Técnico...72

1.6. Programación...91

1.6.1. Pruebas Unitarias..111

1.7. Auditoría Funcional..129

1.8. Auditoría Técnica..131

1.8.1. Revisión de Código..132

1.8.2. Métricas...143

1.8.3. Pruebas de rendimiento..153

1.9. Despliegue...161

1.10. Liberación..165

6	

UF2218: Desarrollo de un CMS

UD2.	 Entorno tecnológico

2.1. Plataformas de servicios CMS ..187

2.2. Adecuación. Customización..208

2.3. Desarrollo de nuevos componentes..235

2.3.1. Especificación. Interfaz ...237

2.3.2. Implementación ...254

2.3.2.1. Lenguaje de programación ..254

2.3.2.1. Librerías. APIs ...262

2.3.3. Documentación ...265

UD3.	 Modelos de procesamiento XML

3.1. Procesamiento XML basado en texto ...281

3.2. Procesamiento XML dirigido por eventos.....................................288

3.3. Procesamiento XML basado en árboles.......................................291

3.4. Procesamiento basado en la extracción294

3.5. Transformaciones ..296

3.6. Abstracción de XML...299

3.7. Estándares y Extensiones ..305

UD4.	 Modelo de objeto de documento (DOM)

4.1. Estructura de DOM Core ..317

4.2. Node y otras interfaces genéricas ...320

4.3. Nodos estructurales ...323

4.4. Nodos de contenido ..324

4.5. Interfaz DOMImplementation..327

4.6. Interfaces de DOM Level 3 ...328

7

Índice

UD5.	 Modelo basado en eventos (SAX)

5.1. Interfaz ContentHandler ..339

5.2. Opciones y Propiedades ..342

5.3. Filtros ..352

Glosario...361

Soluciones...365

Anexo...367

Área: informática y comunicaciones

UD1
Proyectos de implementación

10	

UF2218: Desarrollo de un CMS

1.1. Metodología de desarrollo
1.2. 	 Análisis de Requerimientos
1.3. Descripción funcional
1.4.Diseño de arquitectura
1.5. Diseño Técnico
1.6. Programación

1.6.1. Pruebas Unitarias
1.7. Auditoría Funcional	
1.8. Auditoría Técnica

1.8.1. Revisión de Código
1.8.2. Métricas
1.8.3. Pruebas de rendimiento

1.9. Despliegue
1.10. Liberación

11

1.1. Metodología de desarrollo

La primera pregunta que debemos plantearnos es qué es una metodología de
desarrollo.

En primer lugar, no debemos confundir la metodología de desarrollo de soft-
ware (framework) con los paradigmas o filosofías de desarrollo de software, en
base a los cuales se aplica una determinada metodología.

Desde el origen de las tecnologías de la información, han surgido varios para-
digmas de desarrollo de software; en términos generales son los siguientes:

–– Metodologías basadas en ciclo de vida del software

–– Metodologías Ágiles

En base a cada uno de estos paradigmas, han aparecido varios modelos:

Metodologías
basadas en
el ciclo de
vida del soft-
ware

Cascada: framework lineal

Espiral: framework combinado lineal-iterativo

Incremental: framework combinado lineal-iterativo o Modelo V

Prototipado: framework iterativo

Rapid application development (RAD): framework iterativo

Metodologías
Ágiles

Scrum

Extreme programming (XP)

Adaptive software development (ASD)

Dynamic system development method (DSDM)

Por tanto, una vez situado el contexto adecuado, podemos definir una meto-
dología de desarrollo de software como un framework usado para estructurar,
planificar y controlar el proceso de desarrollo de un sistema de información.

12	

UF2218: Desarrollo de un CMS

Además de lo descrito, una metodología también puede incluir aspectos so-
bre el entorno de desarrollo –IDE por sus siglas en inglés: Integrated Develop-
ment Environment, el desarrollo basado en modelos, y la utilización de ciertos
componentes (librerías de programación u otras herramientas).

Desarrollo ágil

Las metodologías de desarrollo ágil están de moda y son populares. Todas
las compañías punteras en el mercado de tecnologías de la información las
utilizan: Google, Yahoo, Symantec, Microsoft, y la lista sigue.

Sabías

En 1986, [Brooks] predijo que en 1996, ninguna técnica o tecnología de ges-
tión ofrecería un aumento de diez veces en la productividad, la fiabilidad o la
simplicidad. Ninguna lo hizo. Las metodologías de desarrollo ágil tampoco.

De hecho, no es recomendable la adopción de una metodología de desa-
rrollo ágil únicamente con el objetivo de aumentar la productividad. Sus be-
neficios -incluso la capacidad de liberar el software con más frecuencia- se
obtienen por el hecho de trabajar de manera diferente, no trabajar más rá-
pido. Aunque la evidencia anecdótica indica que los equipos ágiles tienen
una productividad superior a la media, esa no debe ser la principal motiva-
ción de su adopción. Su equipo necesitará tiempo para aprender el desarrollo
ágil. Mientras aprenden -y se necesitará un tiempo-, van a ir más lentos, no
más rápidos. Además, haciendo hincapié en la productividad únicamente, po-
dría animar a su equipo a tomar atajos y ser menos riguroso en su trabajo, lo
que en realidad podría perjudicar la productividad.

El desarrollo ágil puede ser la “cosa de moda” que hacer en este momento,
aunque no haya ninguna razón que justifique su utilización. Cuando se con-
sidera el uso de una metodología de desarrollo ágil, sólo debemos hacernos
una pregunta.

¿El desarrollo ágil nos ayudará a tener más éxito?

Cuando pueda responder a esa pregunta, sabrá si el desarrollo ágil es el ade-
cuado para su proyecto.

13

UD1

Entender el éxito

La idea tradicional del éxito es la entrega a tiempo, dentro del presupuesto, y
de acuerdo con la especificación. A continuación, algunas definiciones clási-
cas:

–– Exitoso: “Completado a tiempo, dentro del presupuesto, con todas las
características y funciones que se especifican en un principio.”

–– Desafiado: “Completado y en funcionamiento, pero por encima del presu-
puesto, sobre la estimación de tiempo, [con] un menor número de carac-
terísticas y funciones que se especifican en un principio.”

–– Dañado: “Cancelado en algún momento durante el ciclo de desarrollo.”

A pesar de su popularidad, hay algo erróneo en estas definiciones. Un proyec-
to puede tener éxito incluso si nunca genera un solo euro. Y también puede
ser un fracaso aunque proporcione millones de euros en ingresos.

La revista CIO aportó comentarios sobre esta rareza:

“Proyectos que se ha demostrado que cumplen con todos los criterios tra-
dicionales para el éxito -tiempo, presupuesto y especificaciones- todavía
pueden fracasar al final, bien porque no despiertan interés en los usua-
rios previstos, bien porque en última instancia no agregan mucho valor a la
empresa.

... Del mismo modo, los proyectos considerados fracasos de acuerdo a las
métricas de TI tradicionales pueden terminar siendo éxitos porque a pesar
de los problemas de costes, tiempo o de especificaciones, el sistema es
valorado por su público objetivo o proporciona un valor inesperado.

Por ejemplo, en una empresa de servicios financieros, un nuevo sistema
tuvo seis meses de retraso y un coste de más del doble de la estimación
inicial (el coste final puede 5,7 millones de dólares). Pero el proyecto final-
mente creó una organización más adaptable (después de 13 meses) y se
consideró un gran éxito -la compañía tuvo una reducción de 33 millones de
dólares en cuentas fallidas-, y la reducción del tiempo de generación de va-
lor y el aumento de capacidad se tradujeron en un incremento de un 50 por
ciento en el número de pruebas estratégicas de recolección concurrentes
en producción.”

Más allá de plazos

Tiene que haber algo más en el éxito que el simple cumplimiento de plazos...
¿pero qué?

14	

UF2218: Desarrollo de un CMS

La definición de éxito dependerá, fundamentalmente, de la visión que se utilice
para definirlo.

Software.

Los programadores de software disfrutan como niños creando nuevos siste-
mas y aplicaciones, e independientemente de si la aplicación funciona o no,
se utiliza o no, el programador se sentirá recompensado personalmente por-
que se habrá divertido escribiendo el código y habrá aprendido nuevas cosas.

Definición

Por tanto, desde un punto de vista individual, la definición del éxito estará
centrada en recompensas personales.

Cuando el proyecto alcanza cierta envergadura a nivel técnico, las aplicacio-
nes y sistemas a desarrollar se vuelven más complejos, y es necesario la in-
tervención de varios programadores codificando al mismo tiempo en el mismo
sistema. En este momento, la legibilidad del código y su mantenibilidad se
tornan conceptos importantes.

Definición

Por tanto, desde un punto de vista tecnológico, el concepto de éxito se aso-
ciará a la excelencia técnica.

15

UD1

A pesar de un buen código, algunos proyectos fracasan. Incluso los proyectos
ejecutados impecablemente podrían provocar bostezos de los usuarios. Nor-
malmente, los proyectos forman parte de un ecosistema mucho mayor, en el
cual participan decenas, cientos o incluso miles de personas. Los proyectos
de TI deben satisfacer las necesidades de esa gente.

Definición

De hecho, desde un punto de vista económico, el valor aportado por el soft-
ware debería superar su coste. En este caso, el éxito significa la entrega de
valor a la organización.

Estas definiciones no son incompatibles entre sí. Los tres tipos de éxito son
importantes. Sin el éxito personal, tendrá problemas para motivarse a sí mismo
y al resto de miembros de la organización. Sin éxito técnico, su código fuente
con el tiempo se derrumbará por su propio peso. Y sin éxito de la organiza-
ción, su equipo puede encontrar que ya no es requerido en la empresa.

La importancia del éxito de la organización

El éxito de la organización es a menudo descuidado por los equipos de soft-
ware a favor de los éxitos personal y técnico, más fácilmente alcanzables.
Tenga la seguridad, sin embargo, que incluso si usted no está tomando la
responsabilidad de éxito de la organización, el resto de la organización –a nivel
global- está juzgando a su equipo en este nivel. Es probable que los directivos
senior y los ejecutivos no se preocupen excesivamente de si su software es
elegante, fácil de mantener, o incluso valorado por sus usuarios; ellos se pre-
ocupan por los resultados. Es decir, del retorno de la inversión en el proyecto.
Si no puede conseguir este tipo de éxito, tomarán medidas para asegurarse
de que lo hace. Y desafortunadamente, los altos directivos –por lo general-,
no tienen el tiempo o la perspectiva de aplicar una solución matizada a cada
proyecto. Esperan con razón que sus equipos de trabajo cuiden los pequeños
detalles. Cuando los directivos no están contentos con los resultados de su
equipo, sacan las espadas. Los costes son el objetivo más evidente. Hay dos
maneras fáciles de reducir los costes: establecer plazos agresivos para reducir
el tiempo de desarrollo, o enviar el trabajo a un país con un menor coste de
mano de obra. O las dos cosas. Estas son técnicas torpes. Plazos agresivos
terminan aumentando los horarios en lugar de reducirlos, y la deslocalización
tiene costes ocultos.

16	

UF2218: Desarrollo de un CMS

¿Qué valoran las organizaciones?

Aunque el valor de algunos proyectos proviene directamente de las ventas,
hay más en el valor organizacional que simplemente los ingresos.

Los proyectos proporcionan valor de muchas maneras, y no siempre se pue-
de medir ese valor en unidades monetarias.

Aparte de los aumentos de ingresos y los ahorros de costes, las fuentes de
valor incluyen:

–– Diferenciación competitiva

–– Proyección de Marca

–– Mejora de la lealtad del cliente

–– Satisfacer los requisitos reglamentarios

–– La investigación original

–– Información estratégica

¿Ayudarán las metodologías de desarrollo ágil a tener más éxito? Es posi-
ble. El desarrollo ágil se centra en el logro de éxitos personales, técnicos y
organizativos.

Éxito Organizacional

Las metodologías de desarrollo ágil logran éxitos de organización, centrán-
dose en la entrega de valor y la disminución de los costes. Esto se traduce
directamente en una mayor rentabilidad de la inversión. Las metodologías de
desarrollo ágiles también establecen expectativas a principios del proyecto,
así que si su proyecto no será un éxito a nivel de organización, dispondrá de
tiempo suficiente para llevar a cabo su cancelación con suficiente antelación
antes de que su organización haya gastado mucho dinero.

En concreto, los equipos de desarrollo ágil aumentan el valor mediante la in-
clusión de expertos en negocios y centrando los esfuerzos de desarrollo en el
valor central que el proyecto proporcionará a la organización. Los proyectos
ágiles liberan sus características más valiosas primero y liberan nuevas versio-
nes con frecuencia, lo que aumenta drásticamente el valor aportado. Cuando
las necesidades del negocio cambian o cuando se descubre nueva informa-

17

UD1

ción, los equipos ágiles cambian de dirección para responder a los nuevos re-
querimientos. De hecho, un equipo ágil y experimentado buscará por sí mismo
oportunidades no previstas para mejorar sus planes.

Los equipos ágiles también disminuyen los costes. Hacen esto en parte por la
excelencia técnica; los mejores proyectos ágiles generan sólo algunos errores
al mes. También eliminan los residuos mediante la cancelación de proyec-
tos malos al inicio y reemplazando las prácticas de desarrollo más costosas
con otras más sencillas. Los equipos ágiles se comunican de forma rápida
y precisa, y hacen progresos, incluso cuando las personas clave no están
disponibles. Revisan regularmente sus procesos y mejoran continuamente su
código, lo que hace el software sea más fácil de mantener y mejorar a lo largo
del tiempo.

Éxito técnico

La metodología de desarrollo ágil que expondremos es Extreme Programming
(XP). Esta metodología es particularmente recomendable para alcanzar éxitos
técnicos.

Programadores XP trabajan juntos, lo que les ayuda a realizar un seguimiento
de los detalles más minuciosos, necesarios para un gran trabajo y asegura
que al menos dos personas revisan cada pieza de código. Los programadores
integran continuamente su código, lo que permite al equipo liberar el software
cada vez que tiene sentido a nivel de negocio. Todo el equipo se concentra
en terminar cada función por completo antes de comenzar la siguiente, lo que
evita retrasos inesperados antes de la liberación y permite al equipo cambiar
de dirección a voluntad.

Además de la estructura de desarrollo, Extreme Programming incluye prácti-
cas técnicas avanzadas que llevan a la excelencia técnica. La práctica más
conocida es el desarrollo basado en pruebas, que ayuda a los programadores
a escribir código que hace exactamente lo que ellos creen que hará. Equipos
XP también crean diseños simples y en constante evolución que son fáciles
de modificar cuando los planes cambian.

Éxito Personal

El éxito personal es, bueno, personal. El desarrollo ágil puede no satisfacer
todos los requerimientos para el éxito personal. Sin embargo, una vez que se
acostumbra a él, probablemente encontrará lo mucho que le gusta la metodo-
logía, con independencia del rol que se asuma:

18	

UF2218: Desarrollo de un CMS

Los ejecutivos y altos directivos

Apreciarán el foco del equipo en proporcionar un sólido retorno sobre la
inversión y la longevidad del software.

Usuarios, grupos de interés, los expertos del dominio, y gerentes de pro-
ducto

Apreciarán su capacidad de influir en la dirección de desarrollo de software,
el enfoque del equipo en la entrega de software útil y valioso, y el aumento
de la frecuencia de entrega.

Gerentes de proyecto y de producto

Apreciarán la capacidad de cambiar de dirección al mismo tiempo que cam-
bian las necesidades empresariales, la capacidad del equipo para realizar
y cumplir con los compromisos, y la mejora de la satisfacción de las partes
interesadas (stakeholders).

Desarrolladores

Apreciarán la mejora de su calidad de vida como resultado del aumento de
la calidad técnica, la mayor influencia sobre las estimaciones y los horarios,
y la autonomía del equipo.

Probadores

Apreciarán su integración como miembros de primera clase del equipo, su
capacidad de influir en la calidad en todas las etapas del proyecto, y más
trabajo desafiante e interesante, y menos repetitivo.

¿Qué significa “ser ágil”?

La respuesta es más complicada de lo que parece. El desarrollo ágil no es un
proceso específico que se pueda seguir. Ningún equipo practica el método
ágil. No existe tal cosa.

El desarrollo ágil es una filosofía. Es una manera de pensar sobre el desarrollo
de software. La descripción canónica de esta forma de pensar es el Manifies-
to Ágil, una colección de 4 valores y 12 principios. Para «ser ágiles», hay que
poner estos valores y principios en práctica.

19

UD1

Manifiesto por el Desarrollo Ágil de Software

Estamos descubriendo formas mejores de desarrollar software tanto por
nuestra propia experiencia como ayudando a terceros. A través de este
trabajo hemos aprendido a valorar:

–– Individuos e interacciones sobre procesos y herramientas.

–– Software funcionando sobre documentación extensiva.

–– Colaboración con el cliente sobre negociación contractual.

–– Respuesta ante el cambio sobre seguir un plan.

Esto es, aunque valoramos los elementos de la derecha,valoramos más los
de la izquierda.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

Principios del Manifiesto Ágil

–– Nuestra mayor prioridad es satisfacer al cliente mediante la entrega tem-
prana y continua de software con valor.

–– Aceptamos que los requisitos cambien, incluso en etapas tardías del de-
sarrollo. Los procesos Ágiles aprovechan el cambio para proporcionar
ventaja competitiva al cliente.

–– Entregamos software funcional frecuentemente, entre dos semanas y dos
meses, con preferencia al periodo de tiempo más corto posible.

–– Los responsables de negocio y los desarrolladores trabajamos juntos de
forma cotidiana durante todo el proyecto.

–– Los proyectos se desarrollan en torno a individuos motivados. Hay que
darles el entorno y el apoyo que necesitan, y confiarles la ejecución del
trabajo.

–– El método más eficiente y efectivo de comunicar información al equipo de

20	

UF2218: Desarrollo de un CMS

desarrollo y entre sus miembros es la conversación cara a cara.

–– El software funcionando es la medida principal de progreso.

–– Los procesos Ágiles promueven el desarrollo sostenible. Los promotores,
desarrolladores y usuarios debemos ser capaces de mantener un ritmo
constante de forma indefinida.

–– La atención continua a la excelencia técnica y al buen diseño mejora la
Agilidad.

–– La simplicidad, o el arte de maximizar la cantidad de trabajo no realizado,
es esencial.

–– Las mejores arquitecturas, requisitos y diseños emergen de equipos auto-
organizados.

–– A intervalos regulares el equipo reflexiona sobre cómo ser más efectivo
para a continuación ajustar y perfeccionar su comportamiento en conse-
cuencia.

Métodos Ágiles

Un método o proceso, es una forma de trabajar. Cada vez que hacemos
algo, estamos siguiendo un proceso. Algunos procesos se han escrito, por
ejemplo, para montar un mueble; otros son ad-hoc e informales, por ejemplo,
cuando limpio mi casa.

Los métodos ágiles son procesos que apoyan la filosofía ágil; son elementos
individuales llamados prácticas. Las prácticas incluyen el uso de control de
versiones, el establecimiento de estándares de codificación, y demostracio-
nes semanales a los grupos de interés. La mayoría de estas prácticas han
existido desde hace años. Los métodos ágiles las combinan de una forma
única, acentuando aquellas partes que apoyan la filosofía ágil, desechando el
resto, y mezclándolas en algunas nuevas ideas. El resultado es una metodo-
logía ligera, poderosa, y auto-reforzada.

Extreme programming (xp)

Hay varias metodologías dentro del paradigma de desarrollo ágil (Agile Deve-
lopment), entre ellas las más aceptadas globalmente son Scrum y Extreme
Programming (XP).

	1.1. Metodología de desarrollo
	graphic06
	graphic07
	graphic08
	1.1. Metodología de desarrollo (1)

