UF2406: El ciclo de vida del desarrollo de
aplicaciones

Elaborado por: José Luis Avila Jiménez

Edicion: 5.1

EDITORIAL ELEARNING S.L.

ISBN: 978-84-16492-65-7

No esta permitida la reproduccion total o parcial de esta obra bajo cualquiera de sus formas gréaficas
0 audiovisuales sin la autorizacion previa y por escrito de los titulares del depdsito legal.

Impreso en Espafia - Printed in Spain

Presentacion

|dentificacion de la Unidad Formativa

Bienvenido a la Unidad Formativa UF2406: El ciclo de vida del desarro-
llo de aplicaciones. Esta Unidad Formativa pertenece al Médulo Formativo
MF0227_3: Programacioén orientada a objetos que forma parte del Certifi-
cado de Profesionalidad IFCD0112: Programacion de lenguajes orientados
a objetos y bases de datos relacionales, de la familia de Informatica y
comunicaciones.

Presentacion de los contenidos

La finalidad de esta Unidad Formativa es ensenar al alumno a implementar los
componentes software encomendados, manipular bases de datos a traves de
interfaces para integrar el lenguaje de programacion con el lenguaje de acce-
SO a datos, probar los componentes software desarrollados, asi como utilizar
los componentes orientados a objeto vy elaborar la documentacion del codigo
desarrollado segun los estandares de la organizacion.

Para ello, se desarrollara el proceso de ingenieria del software, planificacion y
seguimiento, se realizara el diagramado, el desarrollo de la GUI, y por dltimo,
se analizara la calidad en el desarrollo del software, pruebas, excepciones y
documentacion.

UF2406: El ciclo de vida del desarrollo de aplicaciones

Objetivos de la Unidad Formativa
Al finalizar esta Unidad Formativa aprenderas a:
— Manejar las herramientas de ingenierfa de software.

— Verificar la correccion de las clases desarrolladas mediante la realizacion
de pruebas.

— Elaborar la documentacion completa relativa a las clases desarrolladas y
pruebas realizadas.

— Realizar modificaciones de clases existentes por cambios en las especi-
ficaciones.

— Desarrollar interfaces de usuario en lenguajes de programacion orientados
a objeto, a partir del diseno detallado.

Indice

UD1.Proceso de ingenieria del software

1.1

1.2

1.8
1.4

1.5

1.6.

Distincion de las fases del proceso de ingenieria software:
especificacion, disefo, construccion y pruebas unitarias, va-
lidacion, implantacion y mantenimiento ... 11

Analisis de los modelos del proceso de ingenierfa: modelo
en cascada, desarrollo evolutivo, desarrollos formarles, etc ... 13

Identificacion de requisitos: concepto, evolucion vy trazabilidad ..20
Andlisis de metodologias de desarrollo orientadas a objeto.... 27

Resolucion de un caso practico de metodologias de desa-

rrollo que Utilizan UML .., 40
Definicion del concepto de Herramienta CASE...................... 53
1.6.1. Herramientas de Ingenieria del Software...................... 60
1.6.2. Entornos de desarrollo ... 63
1.6.3. Herramientas de prueba.........ocovviiiciii 70
1.6.4. Herramientas de gestion de configuracion................... 79

1.6.5. Herramientas para metricasoooviviiviiiiiee 86

UF2406: El ciclo de vida del desarrollo de aplicaciones

ubD2.

UD3.

ub4.

uDb.

ubDe.

Planificacion y seguimiento
2.7, Realizacion de estimaciones..........oocvviiiii 99

2.2. Planfficaciones. Modelos de diagramado. Diagramas de

2.3. Andlisis del proceso de seguimiento. Reuniones e informes. 147

Diagramado

3.1. ldentificacion de los principios basicos de UML................... 167
3.2. Empleo de diagramas de USOoovviiiiiiiiiiii 177
Desarrollo de la GUI

4.1, Andlisis del modelo de componentes y objetos................... 263
4.2, ldentificacion de los elementos de la GUI ..o 273

4.3. Presentacion del disefio orientado al usuario. Nociones de
USADIIdad .. 298

4.4, Empleo de herramientas de Interfaz Grafica......................... 308

Calidad en el desarrollo del software

5.1. Enumeracion de los criterios de calidadocooeiiviinnn. 319
5.2. Analisis de métricas y estandares de calidad....................... 340
ldentificacion de los tipos de pruebas

6.1. Identificacion de los tipos de pruebascooovoiviinn, 357

6.2. Andlisis de pruebas de defectos. Pruebas de caja negra.
Pruebas estructurales. Pruebas de trayectoria. Pruebas de

integracion. Pruebas de interfaces ..., 362
6.2.1. Preparacion de los casos de prueba............oooviiiinn, 371
B8.2.2. Casos de PrUeha ..o, 375

6.2.3. Codificar [as pruebas.........c.oooiiiii, 380

indice

6.2.4. Definir procesos de prueba.........coocooiiin 387
B6.2.5. Ejecucion de pruebas ..o, 396
6.2.6. Generacion de informes de pruebas.............oocooviiin. 400

UD7. Excepciones

7.1. Definicion. Fuente de excepciones. Tratamiento de excep-
clones. Prevencion de fallos. Excepciones definidas y lanza-
das por el Programador.. ... 417

7.2. Uso de las excepciones tratadas como objetos 431

UD8. Documentacion

8.1. COMo producir Un doCUMENTO. ... vviviii e 457
8.2. Estructura de un documento ... 470
8.3. Generacion automatica de documentacion.............oooooinee . 475
G OB IO oo 493

SOIUCI NS 497

Area: informatica y comunicaciones

UD1

Proceso de ingenieria
del software

UF2406: El ciclo de vida del desarrollo de aplicaciones

1.1. Distincion de las fases del proceso de ingenieria software: especifica-
cion, disefio, construccion y pruebas unitarias, validacion, implantacion
y mantenimiento

1.2. Andlisis de los modelos del proceso de ingenieria: modelo en cascada,
desarrollo evolutivo, desarrollos formarles, etc

1.3. ldentificacion de requisitos: concepto, evolucion vy trazabilidad
1.4. Andlisis de metodologias de desarrollo orientadas a objeto

1.5, Resolucion de un caso practico de metodologias de desarrollo que uti-
lizan UML
1.6. Definicion del concepto de herramienta CASE
1.6.17. Herramientas de Ingenieria del Software
1.6.2. Entornos de desarrollo
1.6.3. Herramientas de prueba
1.6.4. Herramientas de gestion de configuracion

1.6.5. Herramientas para métricas

1.1. Distincion de las fases del proceso de ingenieria
software: especificacion, diseno, construccion
y pruebas unitarias, validacion, implantacion y
mantenimiento

Desde el momento en el que se introdujeron computadores con capacidad
para soportar aplicaciones de tamano considerable en los anos sesenta, se
descubrid que las técnicas de desarrollo para los hasta entonces pequenos
sistemas dejaron progresivamente de ser validas.

Estas primitivas técnicas consistian basicamente en codificar y corregir, es decir,
Nno existe necesariamente una especificacion del producto final, en su lugar se
tienen algunas anotaciones sobre las caracteristicas generales del programa.

Inmediatamente al comienzo de un proyecto se empieza la codificacion vy si-
multaneamente se va depurando el programa resultante. Cuando el programa
cumple con las especificaciones y parece gue no tiene errores se entrega.

Las ventajas de esta forma de trabajar son que no se gasta tiempo en planifi-
cacion, gestion de los recursos, documentacion, etc.

En el caso de gque el proyecto es de un tamano muy pequeno y lo realiza una
sola persona Nno es un mal sistema para producir un resultado pronto, aunque
este enfogue No es muy adecuado cuando se trata de desarrollar un trabajo
en equipo, como ocurren en el desarrollo de la mayoria de sistemas software

Hoy en dia es un método de desarrollo que se usa cuando hay plazos muy
breves para entregar el producto final y no existe una exigencia explicita por
parte de la organizacion de usar alguna metodologia de ingenieria del software.
Puede dar resultado en algunas ocasiones pero la calidad es imprevisible.

Las consecuencias de este enfoque, que desembocaron en lo que se deno-
mino la crisis del software, fueron:

11

UF2406: El ciclo de vida del desarrollo de aplicaciones

El costo de los proyectos era mucho mayor de lo originalmente previsto.

El tiempo de desarrollo también excedia lo proyectado.

— La calidad del codigo producido era imprevisible y en promedio baja.

Era practicamente imposible mantener las aplicaciones asi desarrolladas.

Sabias que

La Ingenieria del software surgid en aquella época como disciplina con el
objetivo de idear métodos vy técnicas que solucionaran estos problemas vy
proporcionaran un marco de trabajo técnico adecuado para llevar acabo la
construccion del software.

La Ingenieria del Software se puede definir como aquella rama de las ciencias
de la computacion gue trata del establecimiento de los principios y métodos
de la ingenieria, orientados a obtener software econdmico, que sea fiable y
funcione de manera eficiente sobre maquinas reales.

El software requiere de un tiempo y esfuerzo considerable para ser desarro-
llado, y durante aiin mas tiempo debe de estar en uso antes de ser retirado o
substituido.

Durante todo este periodo de tiempo se identifican una serie de etapas que en
su conjunto se denominan “ciclo de vida del software”.

Las etapas principales de cualquier ciclo de vida son las siguientes:

— Analisis: se identifican los requisitos que debe de cumplir el software y se
construye un modelo de dichos requisitos.

— Disefno: A partir del modelo de anélisis se identifican los procesos vy las
estructuras de datos en las que se descomponen el sistema, y ademas
se construye un modelo del sistema a desarrollar,

— Codificacion: se construye el sistema en si mismo.

— Prueba: se comprueba gue el sistema construido es correcto y cumple
con el modelo de requisitos.

uD1

— Mantenimiento: esta fase tiene lugar tras la entrega del producto acabado
y en ella se trata de asegurar que el sistema siga funcionando y adaptan-
dose a nuevos requisitos.

Desde cualquiera de ellas se puede volver a la anterior si el desarrollo posterior
detecta algun error cometido en las fases anteriores.

Dependiendo de la manera en que se estructuren estas etapas surgen los di-
versos ciclos de vida del software los cuales se pueden clasificar en tres tipos
genéricos, ciclos de vida en cascada, ciclos de vida en espiral o incrementales
y ciclos de vida Orientados a Objetos

1.2. Analisis de los modelos del proceso de inge-
nieria: modelo en cascada, desarrollo evolutivo,
desarrollos formarles, etc

El ciclo de vida en cascada, inicialmente propuesto por Royce en 1970, fue
el primer ciclo de vida que se propuso Yy es, actualmente el mas ampliamente
seguido por una multitud de organizaciones y empresas de desarrollo.

Este modelo tiene la posibilidad de hacer iteraciones o repeticiones, es decir,
gue si durante las modificaciones y cambios que se hacen en la fase de man-
tenimiento se puede detectar la necesidad de cambiar algo en el diseno, por
ejemplo, lo cual significa gue se van a hacer los cambios que sean necesarios
en la codificacion y se tendran que realizar de nuevo las pruebas.

Sin embargo, si se tiene que volver a una de las fase anteriores al manteni-
miento hay que realizar de nuevo el resto de las etapas hasta llegar al final.

Después de cada etapa se hace una revision para chequear si se puede pa-
sar a la siguiente etapa. En el se trabaja en base a documentos, es decir, la
entrada vy la salida de cada etapa es un tipo de documento especifico.

Este ciclo de vida conlleva una serie de ventajas:

— La planificacion del proyectoes sencilla y facil de hacer.

— La calidad del producto si se aplica correctamente es alta.

— Permite trabajar con empleados con menor cualificacion.

13

UF2406: El ciclo de vida del desarrollo de aplicaciones

Sin embargo también presenta una serie de inconvenientes bastante graves
gue hacen que no se suela implementar “tal cual” en la realidad:

— Su mayor inconveniente es la necesidad de detallar todos los requisitos al
comienzo del proyecto. Lo normal es que el cliente no tenga perfectamen-
te claras las especificaciones del software que desea, 0 puede ser que
surjan otras necesidades no previstas durante el proyecto.

— Sise cometen errores en una fase y no se detectan a tiempo es dificil vol-
ver atras, ya que una vez que se ha finalizado una fase y se ha generado
la documentacion correspondiente, un paso atras representa repetir la
fase completamente

— No se desarrolla el producto hasta el final, esto quiere decir que si se tiene
un fallo la fase de andlisis este probablemente No sera descubierto hasta la
entrega, con el lo que conlleva un gasto inutil de recursos. Debido a esto
el cliente no ve resultados hasta el final, con lo que puede impacientarse.

— No se tienen indicadores fiables del progreso del trabajo, lo cual puede
llevar al sindrome del 90%, es decir, las tareas se indican como realizadas
en un 90% pero el restante 10% va a necesitar de un esfuerzo considera-
blemente mayor que el resto.

Sin embargo fue el primer modelo de desarrollo de software que se planted
por lo gue ha influenciado numerosos ciclos ce vida que se han propuesto
posteriormente.

El ciclo de vida en cascada ha inspirado numeroso modelos de ciclos de vida,
como el ciclo de vida en V, el modelo sashimi, o el ciclo de vida en espiral.

El ciclo de vida en V fue propuesto por Alan Davis, vy tiene las mismas fases
que el ciclo de vida en cascada pero teniendo en consideracion en conside-
racion el nivel de abstraccion de cada una.

Se considera gue la fase con mayor nivel de abstraccion es la fase de analisis,
para posteriormente pasar a trabajar a menos nivel en el disefo.

En la codificacion se trabaja al minimo nivel de abstraccion. Posteriormente
durante las distintas fases de prueba se va subiendo de nivel de abstraccion

fase ademas de utilizarse como entrada para la siguiente, sirve para validar
o verificar otras fases posteriores . La estructura de las tareas es la que se
muestra en el esquema.

uD1

Una fase ademas de utilizarse como entrada para la siguiente, sirve para vali-
dar o verfficar otras fases posteriores.

Andlisis <= Validacion =® Mantenimiento

Disefio <@= \ferificacion = Pruebas

Codificacion

De esta forma la tarea de validacion consiste en comprobar los resultados del
andlisis, es decir, si el software cumple con los requisitos que se le exigieron
al principio del desarrollo.

Esto se hace durante la fase de mantenimiento en la que el usuario final duran-
te su trabajo del dia a dia informa al desarrollador de aguellos aspectos gue No
cumplen con lo especificado y determinado durante el analisis.

De la misma forma surge el concepto de Verificacion, en el que se comprueba
que el software funciona correctamente acorde al diseno gue se ha realizado.

Estos dos conceptos, verificacion y validacion son los mayores aportes de este
modelo de ciclo de vida, y se han extendido a toda la ingenieria del software.

®

Podemos definir verificacion como el proceso para determinar que un siste-
ma software esta libre de errores, vy la validacion como el proceso para deter-
minar gue un determinado sistema cumple con los requisitos esperados.

Definiciéon

El modelo Sashimi es otro modelo de ciclos de vida. Si seguimos el modelo
en cascada como fue definido, una fase solo puede empezar cuando ha ter-
minado la anterior.

4
@)

UF2406: El ciclo de vida del desarrollo de aplicaciones

En el caso de este ciclo de vida, sin embargo, se permite un solapamiento
entre fases. Por ejemplo, sin tener terminado del todo el disefo se puede co-
menzar a implementar.

Sabias que

El nombre “sashimi” deriva del estilo de presentacion en rodajas de pescado
crudo en Japon.

Una ventaja de este modelo es que No necesita generar tanta documentacion
como el ciclo de vida en cascada puro debido a que se continda con el mismo
grupo de trabajo durante las distintas fases y por o tanto conocen el proyecto
en profundidad.

Los problemas gue plantea este modelo de ciclo de vida son basicamente los
mismos que el modelo de ciclo de vida en cascada, pero agravados, y son
los siguientes:

— Es mas dificil gue en ciclo de vida clasico el controlar el progreso del pro-
yecto, debido a la falta de puntos de referencia. Debido a que las fases
se solapan constantemente, los finales de fase ya no son un punto de
referencia especifico.

— Al realizar las fases en paralelo, pueden ocurrir a menudo problemas de
comunicacion entre los miembros del equipo, de los que pueden surgir
inconsistencias que necesiten de cambios y modificaciones alterando la
planificacion.

La fase de “concepto” se anade en este modelo de ciclo de vida y en ella se
trata de definir los objetivos del proyecto, beneficios, tipo de tecnologia vy tipo
de ciclo de vida.

La fase de diseno se divide a su vez en dos fases diferentes, el disefio arqui-
tectonico v el diseno detallado o de componentes.

En la fase de diseno arguitectonico es diseno de alto nivel de abstraccion, el
detallado es de bajo nivel de abstraccion, cuando se especifican en detalle
cada uno de los componentes del software.

uD1

Al terminar una iteracion se comprueba que lo que se ha realizado cumple con
los requisitos que se establecieron al principio. También se verifica que funcio-
na correctamente y es el propio cliente quien evalla el producto para ver si es
satisfactorio para resolver su necesidad.

En el ciclo de vida Sahimi no existe una diferencia muy clara entre cuando ter-
mina el proyecto y cuando empieza la fase de mantenimiento ya que cuando
hay que hacer un cambio, éste puede consistir en un Nuevo ciclo.

Presenta numerosas ventajas en cuanto a su utilizacion:

— No necesita una definicion detallada de los requisitos para empezar a
funcionar.

— Al entregar productos desde el final de la primera iteracion es mas facil
validar los requisitos frente a la solicitud del usuario.

— Elriesgo en general es menor porque, si todo se hace mal, solo se pierde
el tiempo y recursos invertidos en una iteracion (las anteriores iteraciones
estan bien por definicion).

— Elriesgo de sufrir retrasos es menor, ya que se identifican los problemas
en etapas tempranas cuando aun hay tiempo de subsanarlos.

Sin embargo también presenta algunos inconvenientes que conviene tener en
cuenta si se decide optar por el a la hora de realizar un proyecto:

— Esdificil llevar a cabo una evaluacion correcta de los riesgos. Por el propio
concepto de riesgo, este lleva implicado una dosis de incertidumbre que
limita el hecho de poder realizar una estimacion adecuada.

— Necesita de la participacion continua de la parte cliente, esfuerzo al que
algunos clientes pueden no estar de acuerdo en realzar, por lo que con-
vienen aclarar cual va a ser su participacion antes de comenzar.

Importante

Los tipos de ciclos de vida que se han visto hasta ahora se refieren al andlisis
y disefio estructurados, pero hay que tener en cuenta que el desarrollo de
sistemas orientados a objetos tiene la particularidad de estar basados en un
disefiado de componentes que se relacionan entre si a traves de una serie de
interfaces, o lo que es Io mismo, son Mmas modulares y por o tanto el trabajo
se puede particionar en un conjunto de pegquenos proyectos o miniproyectos.

UF2406: El ciclo de vida del desarrollo de aplicaciones

Andlisis de
riesgos

Orra
Producto final

Analisis

Protatipo M-simo

Dizena

Codificacion

Fruebas

Esquema de ciclo de vida incremental

Ademas, hoy en dia se trata de tender a reducir los riesgos vy, en este sentido,
el ciclo de vida en cascada no proporciona muchas ventajas. Debido a todo
esto, el ciclo de vida tipico en una metodologia de disefio orientado a objetos
alguna variacion del ciclo de vida en espiral.

Un ejemplo de ciclo de vida Orientado a Objetos es elllamado “modelo fuente”,
que fue desarrollado por Henderson-Sellers y Edwards en 1990.Es un tipo de
ciclo de vida pensado para ser aplicado siguiendo el paradigma de la orienta-
cion a objetos vy posiblemente el mas seguido con la ventaja de que permite
un desarrollo solapado e iterativo.

Un proyecto en modelo fuente se divide en las siguientes fases:

— Planificacion del negocio.

— Construccion: Es la mas importante vy se subvidide a su vez en otras
tantas actividades: Planificacion, Investigacion, Especificacion, Implemen-
tacion y Revision.

— Entrega o ’liberacion”.

0]

uD1

La primeray la tercera fase son independientes de la metodologia de desarro-
llo orientado a objetos. Que se utilice Ademas de las tres fases, existen dos
periodos:

— Crecimiento: Es el tiempo durante el cual se esta construyendo el sistema.

— Madurez: Es el periodo de mantenimiento del producto. En el cada mejora
se planifica igual que el periodo anterior, 0 sea, llevando a cabo las fases
de Planificacion del negocio, Construccion y Entrega.

Cada una de las clases de la aplicacion desarrollada puede tener un ciclo de
vida propio debido a que cada clase puede estar en una fase diferente en un
momento cualquiera.

Un esquema de su estructura es el siguiente:

Madurez

Pericdos N
Crcimicnto Mgjora | Mejora 2

Planificacjo

Actividades * | Planificacion |Investigacion Especificacion Jmplement. Revision | »

Esquema de ciclo de vida orientado a objetos

La fase de analisis de requisitos comienza tras el andlisis del sistema donde se
va a encuadrar el producto que se va desarrollar y tiene como objetivo crear
un modelo de los requisitos que debe de cumplir el software. Este modelo se
plasmara en un documento, la “especificacion de requisitos del software” que
sera el producto final de esta fase y el punto de comienzo de la siguiente fase,
el diseno.

El andlisis de requisitos podemos subdividirlo en tres partes, la blsqueda de
requisitos y el modelado de requisitos.

La bUsgueda de requisitos tiene como objetivo descubrir las verdaderas nece-
sidades del cliente que ha encargado el desarrollo del sistema software.

UF2406: El ciclo de vida del desarrollo de aplicaciones

En la mayorfa de las ocasiones el cliente que desea un desarrollo no tiene al
comienzo muy claro que producto necesita. En otras ocasiones puede tener
claro gue es lo que quiere pero la labor del ingeniero del software es determi-
nar que es lo que necesita.

Para ello se pueden utilizar varias técnicas, como las que se definen a conti-
nuacion.

1.3. Identificacion de requisitos: concepto, evolucion
y trazabilidad

®

Entrevistas: reuniones entre el cliente y el equipo desarrollador, en la que se
determinan los requisitos del sistema.

Definicion

Estas siempre la tendremos, al menos al inicio del proyecto, aungue convie-
ne que se hagan con cierta frecuencia para que se expliciten los requisitos y
estos se refinen. Conviene que las entrevistas no solamente sean con la alta
direccion o la gerencia, sino que en ella se involucren otros actores, preferible-
mente los usuarios que van a trabajar con la aplicacion final y que conoceran
mucho menos los rusitos de esta.

®

Desarrollo conjunto de aplicaciones (JAD): Es un tipo de entrevista con
muchos participantes desarrollada por IBM que se apoya en la dinamica de
grupos. LaPlanificacion conjunta de requisitos (JRP) es un subconjunto de las
sesiones JAD, dirigidas a la alta direccion y los productos que resultan de ellas
son los requisitos de alto nivel o estratégicos.

Definicion

20

